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ABSTRACT 
 

ick-borne diseases pose a significant health 
threat to humans and animals in Cameroon. 
This country is home to various tick species 

capable of transmitting diseases such as African 
swine fever, Anaplasmosis, Lyme disease and Congo-
Crimean Hemorrhagic fever. Climate, habitat, tick 
geographic distribution, host availability, and human 
behavior impact Tick-borne disease dynamics. 
Despite research advancements, gaps remain in 
identifying ecological tick habitats and mapping 
environmental risk distribution, particularly in remote 
areas of third world countries. This study examined 
environmental and ecological factors influencing tick 
populations, environmental niche suitability and 

disease transmission. The methodology used is based 
on an advanced species distribution entropy 
modeling approach to analyze and visualize tick-
borne disease geographic risk distribution in 
Cameroon's North-West, West, Adamawa, and 
Northern Regions. The results reveal Environmental 
preferences of tick-borne disease vectors, 
Geographic distribution of disease risk and high-risk 
areas for targeted surveillance and control.  
 

 
Keywords : Ticks, diseases, Niche, Distribution, 
Cameroon. 

 
 
RÉSUMÉ 
 

es maladies transmises par les tiques (MTT) 
constituent une menace sanitaire importante 
pour les humains et les animaux au Cameroun. 

Ce pays abrite diverses espèces de tiques capables de 
transmettre des maladies telles que la peste porcine 
africaine, l'anaplasmose, la maladie de Lyme et la 

fièvre hémorragique Congo-Crimée. Le climat, 
l'habitat, la répartition géographique des tiques, la 
disponibilité des hôtes et le comportement humain 
ont un impact sur la dynamique des maladies 
transmises par les tiques. Malgré les avancées de la 
recherche, des lacunes subsistent dans l'identification 
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des habitats écologiques des tiques et la cartographie 
de la répartition des risques environnementaux, en 
particulier dans les zones reculées des pays du tiers 
monde. Cette étude a examiné les facteurs 
environnementaux et écologiques influençant les 
populations de tiques, l'adéquation des niches 
environnementales et la transmission des maladies. 
La méthodologie utilisée est basée sur une approche 
avancée de modélisation de l'entropie de la 
distribution des espèces pour analyser et visualiser la 
distribution géographique des risques de maladies 
transmises par les tiques dans les régions du Nord-

Ouest, de l'Ouest, de l'Adamawa et du Nord du 
Cameroun. Les résultats révèlent les préférences 
environnementales des vecteurs de maladies 
transmises par les tiques, la répartition géographique 
du risque de maladie et les zones à haut risque pour 
une surveillance et un contrôle ciblés. 
 

 
Mots-clés : Tiques, maladies, Niche-Distribution, 
Cameroun. 

INTRODUCTION 

ick-borne infections are widespread viral 
zoonosis of medical importance, posing a 
significant health threat globally (Spengler et 

al., 2019: 70). Despite this, tick-borne diseases are not 
always prioritized in disease surveillance and control 
campaigns in Sub-Saharan Africa. 
The increasing spread of tick-borne diseases, 
including their ability to emerge or re-emerge in new 
areas, is a public health issue due to the infectious 
potential of viral vectors and the severity of infections 
like Crimean-Congo hemorrhagic fever, which has 
limited treatment options (Tipih et al., 2020:137). 
Changes in environmental and climatic variables alter 
the distribution of tick-borne infection vectors, 
highlighting the influence of ecological niche 
favorability on host and vector dynamics (Estrada-
Peña et al., 2015:1; Gale et al., 2010: 1859). Limited 
livestock disease surveillance at African borders 
allows the importation of tick-infected livestock and 
viral pathogens into neighboring countries (Motta et 
al., 2017: 14). The discovery of Rhipicephalus 
(Boophilus) Microplus in Cameroon is concerning, as 
it is a vector of Babesia bovis, a severe cattle tick-
transmitted disease (Awa et al., 2015: 117; Silatsa et 
al., 2019: 10). 
In Cameroon, 53 Ixodid hard tick species have been 
identified, with most research focusing on ticks that 
transmit infections to livestock, domestic animals, 
and humans (Ragenau 1951: 441). Tick-borne 
zoonotic infections pose a significant threat to 

livestock production and human health (Jongejan 
2004:3). 
Research in Cameroon has evolved to assess 
environmental factors favoring tick infections, 
considering climate change and viral vector 
adaptability (Ngnindji-Youdje et al., 2022: 82; Abanda 
et al., 2019: 1). However, gaps exist in research 
coverage, with most studies concentrated on 
principal livestock rearing areas and urban areas, 
leaving large parts of the country unstudied and 
increasing vulnerability (Silatsa et al., 2019: 1). 
This research aims to address gaps in tick-borne 
infection vulnerability studies by assessing 
distribution and analyzing environmental factors in 
four regions of Cameroon. Changes in environmental 
stability and bio-ecology disrupt disease patterns and 
vector behavior, expanding zoonotic viral vector 
niches (Mild et al., 2010: 199). Climate change 
influences migratory birds carrying immature tick 
vectors, expanding vector distribution. Four key 
factors contribute to Tick-borne disease spread and 
Ixodid tick populations: climate, land cover dynamics, 
animal hosts, and movement (Arrontes 2005: 57). 
In livestock rearing areas, incident outpatient report 
data aids in understanding and managing tick-borne 
infections, identifying hotspots and vulnerable 
populations (Mark 2017: 68). Surveillance in human 
and vector populations helps monitor outbreak 
likelihood and identify hotspots. 
This research uses Maxent entropy modeling to 
assess environmental risk vulnerability associated 
with tick-borne infections in Cameroon.
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1. STUDY AREA 
 

ameroon, located in Equatorial West Africa, 
spans 475,440 km², see (Fig. 1) and is known 
as “Africa in miniature” due to its diverse 
ecosystems, including mountains, deserts, 
rainforests, and coastlands. It lies between 

latitudes 2° and 12° North and longitudes 8° and 16° 
East, with five agro-ecological zones characterized by 
distinct climates and vegetation, ranging from arid 
savannas in the north to equatorial rainforests in the 
south (Kelly, RF., 2021: 781). Administratively, the 
country is divided into 10 regions see (Fig. 1) below, 
further subdivided into divisions and sub-divisions. 
Cameroon borders six countries and has a Gulf of 
Guinea coastline. Its climate features wet (May–
October) and dry (November–April) seasons, with 
varying rainfall and temperatures. 
Major cattle production regions include the 
Northwest, Adamawa, West, and Far North, which 
collectively face significant risks from tick-borne 

diseases. Cattle rearing is vital to these regions' 
economies, with the North-West Region and Vina 
Division alone reporting cattle populations of 546,508 
and 176,257, respectively, in 2013 (Ngalim et al., 
2015: 175; Motta et al., 2018: 1). Herd sizes range 
from 50 to 150 cattle, often grazed on communal 
pastures. Transhumance, a seasonal migration of 
livestock, is common during the dry season. 
This combination of geography, climate, and pastoral 
practices supports a variety of Ixodid tick species, 
posing challenges to livestock productivity and 
farmer livelihoods. Effective tick control and disease 
surveillance are essential for protecting human 
health, cattle, and local economies. Approximately 
60% of the North-West Region is suited for livestock 
production, reinforcing agriculture's economic 
significance in rural Cameroon (Ngalim et al., 2015: 
175).

 

Fig. 1: Map of Cameroon illustrating all Four Regions of Interest 
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2. METHODOLOGY 

ick-borne infections primarily persist in 
enzootic cycles, requiring specific host-vector 
interactions, such as animal-tick relationships, 

with humans serving as accidental hosts (Hoogstraal, 
1979: 307). While human infections are rare, 
individuals in close contact with livestock, such as 
those in slaughterhouses, face higher exposure to tick 
bites or infected blood. Clinical manifestations of 
human tick-borne diseases are depicted in (Fig. 2) 
below. Human-to-human transmission can occur 

through contact with bodily fluids of infected 
individuals, particularly affecting family members and 
healthcare workers. Certain diseases, like Crimean-
Congo hemorrhagic fever virus, lack a cure or vaccine 
for humans. Current treatment relies on supportive 
care. Preventive measures include livestock 
vaccination, pesticide use, and wearing protective 
equipment when near livestock or infected 
individuals (Messina et al., 2015: 503; Mark, 2017: 
68). 

 
Fig. 2: Illustrates Clinical Signs and Symptoms of Some Tick-borne Infections 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Many tick-borne diseases have been identified in 
hard ticks of the Ixodidae classification such as; 
Amblyomma, Hyalomma, Rhipicephalus and 

Dermacentor, see (Fig. 3a-h). These ticks turn to act 
as reservoirs and carriers of tick related infections 
(Gargili et al., 2017:93, Spengler et al., 2016: 31).  
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Fig. 3: Tick-borne Disease Vectors of the Amblyomma, Hyalomma, Rhipicephalus and Dermacentor Ixodidae classification and 
Family). 

Source: World Health Organization (WHO) Report, 2022. 

 
 
2.1. Data 
 
2.1.1. Inventory Tick-borne Disease Vector Data and Sample Collection Locations 
 

ick vectors are adaptable organisms that thrive 
in various ecological niches globally. To 
conduct comprehensive research on tick 

populations, data must be collected from diverse 
environments, including urban livestock farms (e.g., 
Ngaoundere, Garoua, Bamenda) and remote areas 

(e.g., Mayo Sava, Adamawa plateau, Benoué 
National Park). However, logistical and financial 
constraints require strategic site selection to ensure 
cost efficiency and accurate data collection. The 
criteria considered for the selection of tick sample 
collection site for this study included:

 
1. Geographical Location: Ticks have specific habitats; therefore, locations must be representative of where 

ticks are likely to be found (Ngangnang et al., 2021: 82). 
2. Host Availability: Ticks require hosts to feed on, making livestock farms preferable for sample collection 

(Ngangnang et al., 2021: 82). 
3. Tick Abundance: Environmental suitability affects tick populations; thus, sites with favorable niches 

should be prioritized to ensure sufficient sample sizes (Ngangnang et al., 2021: 82). 

A sum of 27 tick sample locations (livestock farms) 
were identified within the study areas, and their 
respective latitude and longitude recorded. The tick  

Sample collection used the “Removal from host” 
method, employing fine tweezers as recommended 
in the literature (Kaufman et al., 1980:102) see (Fig. 4) 
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                     Fig. 4: Tick Vector Sample Collection Locations (Livestock Farms) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
A database of 93 tick vector species was compiled, 
including latitude and longitude coordinates 
recorded via a global positioning system for precise 
identification, see (Fig. 5) below. The identified 
species included Amblyomma variegatum, 
Hyalomma dromedarii, Hyalomma rufipes, 
Hyalomma truncatum, Rhipicephalus sanguineus, 
Rhipicephalus annulatus, Rhipicephalus decoloratus, 
and Rhipicephalus microplus. These tick samples 
were evenly distributed across the four areas of 

interest for the research. The collected tick vector 
data was validated against peer-reviewed literature 
(e.g., Silatsa et al., 2019: 1) and reputable databases, 
such as GenBank and the Global Biodiversity 
Information Facility (GBIF; www.gbif.org). 
Additionally, the manual search guide outlined in 
Messina et al. (2015: 503) was used to cross-
reference tick presence and sample site data, 
ensuring accuracy and reliability. 
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Fig. 5: Spatial Distribution of Tick Vector Samples within Areas of Interest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2.   Biotic and Abiotic Environmental Data Layers 

his study employed GIS tools to analyze the 
geographic and environmental characteristics 
of the four areas of interest, calibrating its model 

with abiotic and biotic variables. Abiotic variables 
included climate data, topographic datasets, land-use 
and land-cover, normalized vegetation index, and 
enhanced vegetation index, as summarized in (Tab. 1) 
below. Biotic variables encompassed livestock spatial 
distribution, population distribution, and density in 
(Tab. 2) below. The integration of these factors 
enabled the modeling of tick vector spatial distribution 
in the areas of interest. Climate data calibration used 
interpolated bio-climatic variables from WorldClim, 
covering annual means, seasonality, and extreme 
conditions (Mark, 2017: 68). Advanced smoothing 
analysis generated continuous climate rasters with a 
1km² spatial resolution. Normalized vegetation index, 
and enhanced vegetation index data, sourced from the 
Copernicus Global Land Service archive (2012–2018), 

provided insights into soil wetness, a critical factor for 
Ixodid tick habitats (Randolph, 2000: 217).Land-use 
data from the Global Land Cover 2000 Project 
categorized habitats into five groups: dry savannas, 
croplands, deciduous forests, evergreen forests, and 
forest/savanna mosaics. A Maximum Likelihood 
Classification approach was used to analyze Land use 
land cover data at 1km² resolution, converting land 
cover classes into raster layers for enhanced model 
precision. Topographic variables, including slope, 
aspect, and elevation, derived from a high-resolution 
DEM, were equally used to further enriched the 
model. Comprehensive livestock density and 
distribution data, including cattle, goats, and pigs, were 
integrated from the Food and agriculture organization 
databases (accessed Feb 7, 2024) at a 1km² resolution, 
adding depth to the biotic analysis. These detailed 
datasets and classifications supported the 
development of a robust model for understanding the 
ecological environments favoring tick vector habitats  
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Tabl. 1: Abiotic Variables (Topographic, Land cover coverage and Bioclim Covariates) 

 
Variables                                                                                                                                        Data Resolution 
Slope                                                                                                                                                                                             (1km) 
Aspect                                                                                                                                                                                          (1km) 
Elevation                                                                                                                                                                                     (1km) 
Terrain Curvature                                                                                                                                                                    (1km) 
Terrain Roughness                                                                                                                                                                  (1km) 
LULC Natural                                                                                                                                                                             (1km) 
LULC Artificial                                                                                                                                                                            (1km) 
NDVI Averages                                                                                                                                                                        (1km) 
SWI                                                                                                                                                                                             (1km) 
EVI                                                                                                                                                                                               (1km) 
BIO1 = annual mean temperature ©                                                                                                         30 arc-seconds, (1km) 
BIO2 = mean diurnal range (mean monthly (max temp – min temp) ©.                                      30 arc-seconds, (1km) 
BIO3 = Isothermally (BIO2/BIO7) (_ 100) (_C)                                                                                         30 arc-seconds, (1km) 
BIO4 = temperature seasonality (standard deviation _ 100) (_C)                                                     30 arc-seconds, (1km) 
BIO5 = maximum temperature of warmest month (_C)                                                                     30 arc-seconds, (1km) 
BIO6 = minimum temperature of coldest month (_C)                                                                         30 arc-seconds, (1km) 
BIO7 = temperature annual range (BIO5 – BIO6) (_C)                                                                          30 arc-seconds, (1km) 
BIO8 = mean temperature of wettest quarter (_C)                                                                               30 arc-seconds, (1km) 
BIO9 = mean temperature of driest quarter (_C)                                                                                   30 arc-seconds, (1km) 
BIO10 = mean temperature of warmest quarter (_C)                                                                          30 arc-seconds, (1km) 
BIO11 = mean temperature of coldest quarter (_C)                                                                             30 arc-seconds, (1km) 
BIO12 = annual precipitation (mm)                                                                                                            30 arc-seconds, (1km) 
BIO13 = precipitation of wettest month (mm)                                                                                       30 arc-seconds, (1km) 
BIO14 = precipitation of driest month (mm)                                                                                           30 arc-seconds, (1km) 
BIO15 = precipitation seasonality (coefficient of variation) (mm)                                                    30 arc-seconds, (1km) 
BIO16 = precipitation of wettest quarter (mm)                                                                                      30 arc-seconds, (1km) 
BIO17 = precipitation of driest quarter (mm)                                                                                          30 arc-seconds, (1km) 
BIO18 = precipitation of warmest quarter (mm)                                                                                   30 arc-seconds, (1km) 
BIO19 = precipitation of coldest quarter (mm)                                                                                      30 arc-seconds, (1 km) 

WorldClim (1960-2000) and SRTM (shuttle Radar Topographic Mission) 

 
Tabl. 2: Biotic Variables (Livestock and Population Density/Distribution Covariates) 

 
Variables                                                                                                                                                              Data Resolution 
Population Density                                                                                                                                                        (1km) 
Population Distribution                                                                                                                                               (1km) 
Goat                                                                                                                                                                                   (1km) 
Cattle                                                                                                                                                                                 (1km) 
Horse                                                                                                                                                                                 (1km) 
Pig                                                                                                                                                                                       (1km) 
Sheep                                                                                                                                                                                (1km) 

GLCN (Global Land Cover Network (2014)) 
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The biotic and abiotic environmental layers 
mentioned above were all pre-treated for 
consistency issues and transformed into ArcGIS raster 
layers with the same projections and pixel 
resolutions. In order to ensure that all of the raster 
layers aligned within a GIS environment to execute an 
ecological niche factor analysis using the highly 
sophisticated ecological species maximum entropy 
distribution algorithm “Maxent,” every single raster 
layer was then projected into the exact same 
coordinated system, WGS_1984_UTM_Zone_32N. 
(Jaynes 1957: 620; Mark 2017: 68; Philips & Dudik 
2008: 161). 

2.2. SPECIES ENVIRONMENTAL DISTRIBUTION 
MODELING APPROACHES 

ver the years, multiple techniques have been 
used for species distribution modeling, each 
addressing different analytical aspects of 

spatial factors influencing species locations. Methods 
like the Similarity Domain approach predict 
environmental suitability based on proximity to 
environmental spaces of the species under study. 
Species presence and background data techniques, 
akin to linear regression models, randomly select 
absence data from background pixels within the area 
of interest (Ferrier et al., 2003). Other methods, such 
as the Genetic Algorithm, generate binary predictions 
based on factor significance (Stockwell & Peters, 
1999: 143). 
BIOCLIM, introduced by Busby (1986: 1) and Nix 
(1986: 4), predicts environmental suitability by 
defining bioclimatic spaces favorable for species. 
Later, the Niche Suitability Environmental Factor 
Analysis transformed environmental spaces into 
favorable or unfavorable zones using species 
presence data and environmental suitability 
distribution (Hirzel et al., 2002: 2027). 
This study integrates biotic and abiotic (Bioclim) data 
into the Maxent entropy algorithm (Jaynes, 1957), 
identifying tick vector ecological niche suitabilities as 
well as tick-borne disease hotspots. Maxent species 
entropy analysis, uses constraints and high entropy to 

evaluate factor importance, converting 
environmental spaces into orthogonal favorable and 
unfavorable zones. While this study does not include 
comparative analysis with other models, this species 
entropy analysis was very effective in the 
identification of niche suitability for tick vectors in the 
areas of interest. 

2.2.1. Maxent Entropy Ecological Niche Modeling 

eo-visualization of tick-borne disease 
hotspots was modeled using Maxent Species 
Distribution Entropy Software, (Phillips et al., 

2006: 231). This tool predicts potential tick presence 
over large areas by analyzing environmental niche 
favorability with limited presence data. Favorability 
niches, where species thrive and expand without 
environmental constraints, were identified through 
variance analysis and extrapolation into unexplored 
geographic spaces. This method enables the 
prediction of suitability zones for tick vectors, 
highlighting potential disease hotspots. Such insights 
guide targeted surveillance and control programs in 
under-researched areas.  
The Tick–borne disease hot spot distribution was 
modeled using Maxent species distribution entropy 
algorithm proposed in 1957 by Jaynes (Jaynes 1957: 
620). Core to the objective of Maxent is predicting the 
distribution of species in unknown geographic space 
by using presence and background data. Maxent is 
particularly well-suited for modeling species 
distribution in areas with limited data, such as tick-
borne disease vectors in under-studied regions. Also, 
This algorithm uses known information such as (tick 
vector presence data) to identify and extract the 
closest entropy distribution on an unknown 
distribution surface to that of the actual tick presence 
locations while at the same time being constraint by 
accompanying biotic and abiotic covariates (Philips 
2006: 231; Philips et al., 2004: 655 & Mark 2017: 68 ). 
The Maxent species distribution entropy model 
algorithm can be expressed mathematically as 
follow; 

         H (ξ) ∑"#$%& '
() = −∑"#$%&"#……………………………Equation (1) 

Where, for a random variable X with different potential result, N1, N2, N3… NX, the presence probabilities are 
P1, P2,…..PX, respectively (Yi et al., 2016: 260). 
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Ninety-three tick vectors from 27 livestock farms 
were sampled and used for this analysis. Biotic and 
abiotic covariates were standardized into the same 
coordinate system and file format before being 
analyzed using the Maxent species distribution 
entropy algorithm. To optimize model accuracy, test 
filtration operations were conducted to identify and 
remove less impactful covariates, preventing dilution 
of results and improving predictive capability 
(Graham, 2003: 2809). 
The initial algorithm test run highlighted biotic and 
abiotic covariates with insufficient contributions to 
predicting environmental niche favorability for tick-
borne vectors. These variables were subsequently 
excluded from the model to enhance its accuracy and 
reliability 

2.2.2. Model Calibration and Implementation 

 randomization subset tool allocated 70% of 
tick vector presence data for model 
calibration and 30% for testing predictive 

accuracy. The data was projected onto potential 
endemic zones across the four study areas to analyze 
ecological niche favorability and disease potential 
hotspot distribution. Predictor variables, including 
abiotic and biotic covariates, were processed using a 

regularization entropy algorithm to identify key 
influencing factors or covariates. 
The Cross-validation tool was used to optimize model 
calibration by maximizing data utilization and 
addressing coordinate errors. To ensure robust 
results, ten replicate runs with random seeding were 
performed on the training data, while 10,000 
background points were evenly distributed across the 
study areas to reduce collinearity errors. Threshold 
and regularization values were selected based on a 
series of set of rules as shown in (Tab. 3) below and 
multiple iterations conducted to ensure total 
coverage. Probabilistic estimation logistic algorithms 
for predictability were employed to ensure every 
pixel within the study area was encoded with 
prediction values of 0 (unsuitable) and 1(suitable). 
The Jacknife permutations were used to identify 
abiotic and biotic covariates importance and relative 
contribution to the final model predictive capability. 
On completion of Jacknife analysis, three models 
were generated, first (without variables), second 
(with only one variable) and thirdly (with all 
variables).The Final model output, visualized the 
predicted geospatial distribution (probability) of 
possible tick-borne disease hot spots across the areas 
of interest as well as the environmental niche 
favorability across the four areas of study. 

 
Tabl. 3: Executed Maxent Analysis Settings 

Maxent Optimization 
Options 

Selected Setting Maxent Optimization Options Selected Setting 

Produce Response 
Curves 

Yes Write Plot data Yes 

Execute Jacknife Yes Extrapolate Yes 
Output format Cloglog Write plots Yes 

Random Seed Yes Maximum Iterations 1000 

Remove Duplicate 
Records 

Yes Convergence threshold 0.00001 

Random test % 25 Default prevalence / 

Regularization Multiplier 1 Maxent Test Rule Maximum test Sensitivity 
and Specificity 

Maximum background 
points replicates 

10,000 Add samples to back ground Yes 

Replicate test Execution 
form 

Bootstrap / / 

(Source: Lila Reni Bibriven 2024) 
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The Maxent species distribution entropy model 
generated a raster map where pixels encoded as (1) 
indicate favorable areas and (0) unfavorable areas, 
based on how well abiotic and biotic covariates 
matched the original tick vector presence data. The 
model performance was subsequently evaluated 
using the Area under the Curve of the Receiver 
Operating Characteristics (Van et al., 1998: 88). 
The Area under the Curve assessed the model's 
ability to predict tick vector presence within 
randomly selected geographic grid units by analyzing 
true positive and true negative rates. The resulting 
Receiver Operating Characteristics plot indicated 
model fitness, with values below 0.5 suggesting 
random performance and values close to or above 

0.5 indicating strong predictive accuracy (Hijmans et 
al., 2005: 1965; Lachiche, 2009: 1675). 

3. RESULTS 

 spatial model of tick-borne disease hotspots 
was developed for the four areas of interest 
using environmental niche favorability data 

from 93 tick vectors. The model predicted areas with 
a high likelihood of disease prevalence by isolating 
ecological niche suitability for tick vectors. Maxent 
entropy analysis, after replicate runs, identified the 
contributions of the abiotic and biotic factors or 
covariate, as shown in the table of percentage 
contributions and permutation importance in (Tab. 4) 
below.

 
Tabl. 4. Analysis of Biotic and Biotic Variable Contributions to the Model Computation. 

 
Variables Percentage Contribution Permutation Importance 

precipitation of the wettest quarter 20% 7% 
Precipitation of the warmest quarter 18% 6.6% 
Isothermality  16.8% 23% 
Min temperature of coldest month  10% 3.4% 
temperature seasonality  9% 17% 
precipitation of the coldest quarter  8.8% 6.3% 
annual mean temperature  6.3% 0.3% 
Goat population  6.2% 4.3% 
Horse  5% 1.2% 
Temperature annual range  4.6% 4.6% 
population density  4.5% 2% 
Cattle population  4.3% 9.7% 
Lulc  3.3% 1.5% 
Pig population  1.2% 0.2% 
Slope  1.2% 0.8% 
Sheep population 0.6% 1.4% 

 
 
The maxent entropy model isolated crucial factors or 
covariates and their respective contributions to the 
overall model’s ecological niche suitability prediction. 
The model computation produced the following 
contribution percentages; precipitation of the 
wettest quarter (20%), Precipitation of the warmest 
quarter (18%), Isothermality (16.8%), Min 
temperature of coldest month (10%), temperature 
seasonality (9%), precipitation of the coldest quarter 

(8.8%), annual mean temperature (6.3%), Goat 
population (6.2%), Horse population (5%), 
Temperature annual range (4.6%), population 
density (4.5%), Cattle population (4.3%), Lulc (3.3%), 
Pig population (1.2%), Slope (1.2%) and Sheep 
population (0.6%).  
Single covariate model replicate reruns were 
conducted on key environmental covariates, 
including bioclimate, livestock density, and 
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population density, to assess probabilistic risk 
distribution. After 10 replicate runs per variable, 
thematic maps illustrating environmental niche 
favorability and risk distribution were generated see 
(Fig. 6, Fig. 7, and Fig. 8) below. The calculated mean 
Area under the Curve of the Receiver-operating curve 

plot for each environmental covariate was high at 
0.838 (test Area under the Curve = 0.838, Area under 
the Curve standard deviation = 0.016), 0.804 (test 
Area under the Curve = 0.804, AUC standard 
deviation =0.023) and 0.784 (test Area under the 
Curve = 0.784) respectively.

Fig. 6 : BioClimate Niche Favorability 
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Fig. 7: Livestock Density Niche Favorability 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 8: Population Density Niche Favorability. 
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Cameroon's diverse biophysical environment 
significantly influences the distribution of tick-borne 
diseases. The thematic maps in (Fig. 6, Fig. 7, and, Fig. 
8) above illustrate how various environmental 
covariates create habitats supporting diverse tick 
species. Examining historical climate covariates, High 
humidity and temperatures enhance tick survival and 
reproduction, while seasonal rainfall promotes 
vegetation growth, providing habitats for ticks and 
hosts. Tick-borne disease prevalence is closely linked 
to livestock density and human activity. High livestock 
populations, see (Fig. 7) above, particularly in cattle 
ranching zones, increase tick infestations and 
transmission of diseases like African Tick-Bite Fever 
and Rickettsiosis. Finally, population density, see (Fig. 
8) above, near agricultural areas further heightens 
exposure to tick bites, amplifying risks. Analyzing the 
correlation between environmental covariates and 
tick risk geographic distribution, will enables public 
health efforts to target high-risk areas, as identified 
through ecological data. This approach supports 
strategies to mitigate tick-borne disease risks, 
safeguarding human and animal health in Cameroon 

3.1. Significant Variables and Model Performance 

urther reruns were performed on the maxent 
entropy model, this time using covariates listed 
above which had a greater contribution to the 

model prediction capability. The resulting thematic 
map visualized tick-borne disease hot spots and 
probabilistic risk geographic distribution as illustrated 
in (Fig. 9) below. The Area under the Curve value for 
the computed high contribution covariates, indicated 
a strong model prediction performance with an Area 
under the Curve score of 0.867.  

 

 

 

 

 

 

 

 

Fig. 9: Final Risk Susceptibility Model of Tick-Borne Disease Geographic and Environmental distribution for the four Regions of 
Interest 
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The thematic map in (Fig. 9) visualizes tick-borne 
disease risk across the four areas of interest, 
highlighting both observed tick presence and 
predicted risk in un-sampled areas. By comparing 
ecological conditions of known tick habitats with 
unexplored areas, the maps identify potential risk 
zones, offering a comprehensive view of disease 
distribution. (Fig. 9) shows zones suitable for ticks, 
even where their presence is unconfirmed, 
addressing gaps in under-studied regions.  

3.1.1. Model Evaluation and Validation 

he maxent model was evaluated using the 
Receiver Operation Characteristic and Area 
under the Curve approaches. The Receiver-

operating curve and the Area under the Curve model 
validation approaches have been utilized in various 

research works from medical to geospatial to 
evaluate the predictive credibility of statistical models 
(Provost and Fawcett, 1997).  
When the Area under the Curve of the tick-borne 
disease hotspot model was plotted, the results 
indicated a high accuracy and predictive capability 
rate of 0.867 with an Area under the Curve standard 
deviation of 0.027 as illustrated in the curve plot in 
(Fig. 10) below. Considering the Receiver-operating 
curve and the Area under the Curve plot thresholds 
of = or < 0.5 signifying random fitness and > 0.5 or 
closer to 1.0 signifying perfect fitness, it can be 
concluded that the tick-borne disease hotspot 
geospatial distribution model is very predictive and 
acceptable as accurate probabilistic tick-borne 
disease risk environmental distribution within the 
four areas of interest for this research (Phillips and 
Dudik 2008: 161).

 
Fig. 10: Tick-Borne Disease Risk Susceptibility Model Receiver-operating curve and Area under the Curve Validation Curve 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Further, thematic maps were used to geo-visualized 
the spatial distribution of risk at a sub-divisional level 
to identify risk dynamics within each administrative 
sub-division. The final model risk distribution at the 
sub-divisional level is visualized in (Fig. 11) below.           

The sub-divisional risk distribution map can be vital in 
timely identification and deployment of resources for 
awareness, prevention, management and 
surveillance of livestock, considering the high 
resolution and precision of risk model at the 
administrative boundary level. 

 
 

T 



 
 
 
 
Revue Espaces Africains – ISSN : 2957 - 9279                              Revue du Groupe de recherche PoSTer (UJLoG - Daloa - CI) 
 

 

39 

 
Fig. 11: Sub-Divisional Tick-Borne Disease Risk Distribution Map 

 

 
 

4. DISCUSSION 
 

his study utilized an integrated approach 
combining GIS analysis with the Maxent 
entropy modeling technique to map the 

ecological niche favorability of tick-borne disease 
vectors. Ninety-three tick vectors were sampled from 
27 urban and rural cattle-rearing sites, selected based 
on geographic location, host availability, and tick 
abundance for cost-effective precision. Abiotic such 
as precipitation, temperature and biotic such as 
livestock density variables were pre-processed into 
ArcGIS raster layers and analyzed in the Maxent 
algorithm environment. The model identified 
precipitation of the wettest quarter as the most 
influential factor for tick environmental niche 
suitability at (20%) and demonstrated strong 
predictive accuracy with an overall Area under the 
Curve score of 0.867. Tick-borne diseases in 
Cameroon pose significant public health risks, 
especially to livestock and people interacting with 

them. Diseases like Crimean-Congo hemorrhagic 
fever virus, which lack effective treatments, 
underscore the need for continuous surveillance. 
While serological and molecular testing has 
documented tick-borne diseases in Cameroon 
(Maurice 1967: 395; Gonzalez et al., 1989: 
e0010217), most research has focused on urban 
areas, neglecting remote zones with potential high-
risk probabilities. The research addresses these gaps 
by generating high-resolution thematic maps to 
visualize the spatial probabilistic risk distribution of 
tick-borne disease, accounting for under-researched 
areas. These maps will inform strategies to manage 
and prevent tick-borne diseases by identifying 
hotspots and guiding control efforts. Understanding 
ecological niche preferences and the geospatial 
distribution of tick vectors enhances disease 
surveillance and management amid evolving climatic 
and ecological dynamics. 
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CONCLUSION 
 

n conclusion, thematic cartographic maps 
generated from this entropy analysis using 
maxent, can be used to identify tick-borne disease 

risk spatial distribution and hotspots in Cameroon. 
These maps can guide targeted interventions like 
vaccinations and public awareness campaigns. Unlike 
previous studies in Cameroon, this research offers a 
broader, high-resolution geo-visualization view of the 
risk across multiple regions within Cameroon. By 
identifying high and potential risk areas, this study 
supports evidence-based decision-making for tick-
borne disease prevention and control in Cameroon as 
well as global effort to combat tick-borne disease 
spread in humans and animals. Further research 
needs to be conducted to improve the spatial 
localization of potential hotspots for tick diseases by 
broad collection of serology samples from humans, 
livestock as well as virology of tick vectors across the 
country. However, such advanced clinical analysis are 
beyond the privy of this study. 
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